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Background and purpose: The European Federation of the Neurological Societies

(EFNS) guidelines on the use of neuroimaging in the diagnosis and management of

dementia are designed to revise and expand previous EFNS recommendations for

the diagnosis and management of patients with Alzheimer’s disease (AD) and to

provide an overview of the evidence for the use of neuroimaging techniques in non-

AD dementias, as well as general recommendations that apply to all types of

dementia in clinical practice.

Methods: The task force working group reviewed evidence from original research

articles, meta-analyses and systematic reviews, published before April 2012. The evi-

dence was classified, and consensus recommendations were given and graded

according to the EFNS guidance regulations.

Results: Structural imaging, which should be performed at least once in the diag-

nostic work-up of patients with cognitive impairment, serves to exclude other poten-

tially treatable diseases, to recognize vascular lesions and to identify specific findings

to help distinguish different forms of neurodegenerative types of dementia.

Although typical cases of dementia may not benefit from routine functional imag-

ing, these tools are recommended in those cases where diagnosis remains in doubt

after clinical and structural imaging work-up and in particular clinical settings.

Amyloid imaging is likely to find clinical utility in several fields, including the strati-

fication of patients with mild cognitive impairment into those with and without

underlying AD and the evaluation of atypical AD presentations.

Conclusions: A number of recommendations and good practice points are made to

improve the diagnosis of AD and other dementias.

Background

Although a detailed clinical assessment remains the

basis of the evaluation of a patient with suspected

dementia, current European [1,2], UK [3] and US [4]

guidelines recommend that ‘structural imaging should

be used in the assessment of people with suspected

dementia to exclude other cerebral pathologies and to
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help establish subtype diagnosis’. If the diagnosis is in

doubt, functional imaging techniques should also be

used to help distinguish different forms of neurodegener-

ative dementia [2,3]. In general, the tendency is to move

away from simply excluding other (brain) diseases,

towards finding specific pointers to a diagnosis [5]. This

approach is exemplified by the formal incorporation of

biomarkers, including those from neuroimaging, in the

most recent revisions of the diagnostic criteria for

Alzheimer’s disease (AD) [6–8]. Two major classes of

biomarkers have been identified: biomarkers of disease

state [i.e. biomarkers of amyloid b (Ab) accumulation,

which are abnormal (increased) tracer retention on amy-

loid positron emission tomography (PET) imaging and

abnormal (low) cerebrospinal fluid (CSF) Ab42] and

biomarkers of disease stage [i.e. biomarkers of neuronal

injury, which are elevated CSF tau, decreased fluorine-

18 (18F)-2-fluoro-2-deoxy-D-glucose (FDG) uptake on

PET in the temporoparietal cortex, and atrophy on

structural magnetic resonance imaging (MRI) in a spe-

cific topographical pattern involving medial, basal, and

lateral temporal lobes and medial and lateral parietal

cortices]. Regardless of whether clinical criteria for pos-

sible AD are fulfilled, when both Ab and neuronal

injury biomarkers are negative, the dementia is unlikely

to be attributable to AD pathology [6–8].

Aims of the European Federation of
Neurological Societies task force

The purpose of the task force is to revise and expand

previous European Federation of Neurological Socie-

ties (EFNS) recommendations on the use of structural

and functional neuroimaging for the diagnosis and

management of patients with AD [2] and to provide

an overview of the evidence for the use of these tech-

niques in vascular dementia and other neurodegenera-

tive dementias, as well as providing general

recommendations that apply to all types of dementia

in clinical practice. Furthermore, in these guidelines,

special attention has been given to clarifying the cur-

rent status and potential future clinical role of PET

with new ligands and also the use of non-conventional

(advanced) MR techniques in these disorders. Consen-

sus recommendations are given and graded according

to the EFNS guidance regulations [9]. Where there

was lack of evidence but consensus amongst experts

was reached, we have stated our opinion as ‘good

practice points’.

Search strategy

The evidence for these guidelines has been identified

from searches of MEDLINE and references from

relevant articles published in peer-reviewed journals

before April 2012. Other published meta-analyses, sys-

tematic reviews and evidence-based management

guidelines in dementia have also been considered,

including the practice parameters from the American

Academy of Neurology [4], the previous recommenda-

tions for the diagnosis and management of AD and

other disorders associated with dementia from the

EFNS [1,2], and the National Institute for Health and

Clinical Excellence guideline [3]. Only articles pub-

lished in English were reviewed.

Methods for reaching consensus

Consensus was reached by circulating drafts of the

manuscript to the task force members and by discuss-

ing the classification of evidence and recommenda-

tions. All members had the opportunity to comment

on the recommendations and approved the final ver-

sion of this document.

Diagnosis and differential diagnosis: the
present approach

Which neuroimaging techniques?

Exclusion of a potentially (surgically) treatable cause

of dementia (e.g. tumour or subdural haematoma)

and evaluation of the presence and extent of cerebro-

vascular disease can be ascertained using computed

tomography (CT). However, MRI offers benefits over

CT for the demonstration of markers of specific dis-

eases, particularly cerebral atrophy patterns [e.g. hip-

pocampal atrophy for AD; very focal temporal and/or

frontal atrophy for frontotemporal dementia (FTD)

and midbrain atrophy for progressive supranuclear

palsy (PSP)] [10–12]. Therefore, MRI should be con-

sidered the ‘preferred modality to assist with early

diagnosis’ in a subject with dementia [2,3].

The essential MR sequences that will provide the

important minimum set of information required to be

addressed in a subject suspected of having dementia

are 3D T1-weighted gradient echo; turbo/fast spin

echo T2-weighted and fluid attenuated inversion recov-

ery (FLAIR) and T2*-gradient echo [5]. If 3D T1-

weighted techniques are unavailable, coronal oblique

2D images can serve as an alternative. A multiplanar

reformatting tool can be applied to such images to

assess specific brain regions (e.g. to reslice the data on

the anterior/posterior commissure line or perpendicu-

larly to the long axis of the hippocampus). Two other

MR techniques that are very frequently used in a clini-

cal setting include diffusion-weighted imaging (DWI)

and post-contrast 2D T1-weighted spin echo images
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[5]. DWI can be useful to identify recent infarcts in

patients with vascular dementia, transient global

amnesia or in the context of vasculitis and to identify

neocortical or striatal abnormalities in patients with

Creutzfeldt–Jakob disease (CJD). Post-contrast T1-

weighted images are recommended in those patients,

typically younger, where there is a suspicion of infec-

tious (e.g. herpes simplex virus encephalitis) or inflam-

matory disorders (e.g. vasculitis, sarcoid, multiple

sclerosis).

Single photon emission computed tomography

(SPECT) and PET both rely on the detection of radio-

active signals from a labelled compound that selec-

tively binds in the brain. The most commonly used

tracer to examine cerebral blood flow (CBF) using

SPECT is 99m-Tc-hexamethylpropylene (HMPAO).

FDG serves as a marker of cerebral glucose metabo-

lism for PET. SPECT is technically less demanding

and more widely available, whilst PET is more sensi-

tive, mainly because of its higher resolution [13–16],
but comes at the cost of more complex detector system

and tracer production facilities. In general, the magni-

tude of hypometabolism seen with FDG PET is

greater than the amplitude of hypoperfusion seen with

CBF SPECT [13]. SPECT and PET images can be

analysed for diagnostic purposes by means of visual

inspection. However, the visual method greatly

depends on the observer’s experience and lacks a clear

cut-off between normal and pathological findings. To

overcome these limitations, FDG PET images can be

assessed using software that analyses the pattern of

tracer uptake voxel-wise by comparing the subject’s

scan with a reference data set of normal ageing.

T-maps (statistical maps of level of significance based

on t tests) are created that allow better recognition of

the pattern of hypometabolism compared with visual

interpretation [17].

Structural MRI findings

Vascular brain diseases

Cerebrovascular disease can be detected by CT and

structural MRI. Although both modalities perform

relatively well in depicting large-vessel infarcts, MRI

is more sensitive to subtle small-vessel vascular

changes than CT. T2-weighted and FLAIR sequences

are highly sensitive for detecting major strokes as well

as small strategic infarcts and small-vessel ischaemic

white matter damage. FLAIR performs less well than

T2-weighted sequences in detecting thalamic infarcts

[18]. Extensive white matter changes visible as diffuse

hyperintense abnormalities on T2 and FLAIR, pre-

dominantly involving the periventricular and deep

white matter, but relatively sparing of the U-fibres,

are the imaging correlate of Binswanger’s disease [19].

Marked hypointensity on T1-weighted images usually

represents tissue destruction in the presence of a

complete large-vessel infarct, whereas white matter

changes are usually not prominently hypointense on

T1-weighted images. Finally, lacunar infarcts are

focal complete infarcts of deep small vessels, which

are hyperintense on T2-weighted images and mark-

edly hypointense on T1 and FLAIR images [19]. On

FLAIR, lacunae are often surrounded by a hyperin-

tense rim.

According to the National Institute for Neurological

Disorders and Stroke Association pour la Recherche

l’Enseignement en Neurosciences (NINDS-AIREN)

international criteria [20], structural brain imaging is

an essential element for the diagnosis of vascular

dementia, and without it vascular dementia will

be ‘possible’ at best. In addition, the operational

radiological definitions for the NINDS-AIREN crite-

ria provided indications on the topography and sever-

ity of vascular lesions [21]. Bilateral infarcts in the area

of the anterior cerebral artery, infarcts in the area of

the posterior cerebral artery, association areas or

watershed regions are thought to be causative of large-

vessel vascular dementia [21]. Extensive white matter

lesions involving at least 25% of the white matter, or

multiple basal ganglia, thalamic and frontal white mat-

ter lacunar infarcts, or bilateral thalamic lesions, are

considered relevant radiological lesions associated with

small-vessel vascular dementia [21]. Research criteria

to specifically diagnose subcortical ischaemic vascular

dementia have also been proposed [19]: the presence of

extensive periventricular and deep white matter lesions

and lacunar infarcts in the deep grey matter or multi-

ple lacunae in the deep grey matter and at least moder-

ate white matter lesions, in the absence of cortical and/

or cortical–subcortical (non-lacunar) territorial

infarcts, watershed infarcts, haemorrhages and other

specific causes of white matter lesions.

Different methods can be used to measure the

extent of white matter changes to diagnose subcortical

ischaemic vascular dementia. Visual rating of white

matter hyperintensities is relatively easy, and several

scales [22–24] are available with good reproducibility.

Volumetric studies use semi-automatic techniques that

may provide more information on location and size,

as well as continuous data, but are time consuming

[25]. With the Age-Related White Matter Changes

(ARWMC) scale [24], for instance, a score of 3 in at

least two regions and a score of 2 in two other regions

could be sufficient for a diagnosis of subcortical vas-

cular dementia [25]. A conversion table amongst some

of the most popular scales to rate white matter lesions

can be found in Frisoni et al. [26].
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Cerebral microbleeds (or microhaemorrhages) are

small, rounded, dot-like lesions of low signal intensity

in the brain that can be observed on T2*-weighted
images, such as gradient echo [27–29]. Susceptibility-
weighted imaging has considerably increased micro-

bleed detection rates compared with gradient echo

sequences [30,31]. The sensitivity to detect microbleeds

is also dependent on slice thickness and magnetic field

strength [32]. Microbleeds in deep brain regions are

most likely to be associated with vasculopathy owing

to hypertension, whilst their distribution is mostly

lobar in specific disorders such as sporadic cerebral

amyloid angiopathy (CAA) [33]. Sporadic CAA is the

most common cause of lobar intracerebral haemor-

rhages in the elderly and results from cerebrovascular

deposition of b-amyloid protein in the media and

adventitia of small- and medium-sized vessels of the

superficial layers of the cerebral cortex and leptome-

ninges, with sparing of the deep grey matter nuclei

[34]. According to a set of validated criteria (termed

Boston criteria) [35], a diagnosis of probable CAA

can be reached in elderly patients with at least two

acute or chronic lobar haemorrhagic lesions (including

microbleeds), in the absence of other definite cause of

intracerebral haemorrhage.

The presence of extensive white matter lesions and

multiple bilateral, lacunar infarcts on T2-weighted

and FLAIR images is critical for the diagnosis of

cerebral autosomal dominant arteriopathy with sub-

cortical infarcts and leucoencephalopathy (CADA-

SIL), a genetic form of vascular dementia in relatively

young people [36]. The most distinctive MRI features

suggestive of CADASIL are the presence of T2 hyper-

intensity of the temporal pole, the U-fibres at the ver-

tex and external capsule or insular region, and

multiple microhaemorrhagic foci (basal ganglia, inter-

nal capsule, thalamus and pons), which can be seen

on gradient echo scans [36].

Although an increased white matter lesion load sug-

gests vascular disease, particularly in combination with

lesions in the basal ganglia, a critical clinical challenge

in subjects with vascular lesions is determining the rela-

tionship of cerebrovascular disease and cognitive symp-

toms. To appropriately diagnose vascular cognitive

impairment or dementia, there should be a clear rela-

tionship in the severity and pattern of cognitive impair-

ment and the presence of vascular lesions with

neuroimaging [20]. However, this association can be

confounded by the frequent co-occurrence of depres-

sion on a cerebrovascular basis, as well as by the fre-

quent coexistence with neurodegenerative diseases,

especially AD. Small-vessel disease is frequently

observed in MRI scans of AD patients in the form of

white matter hyperintensities, lacunae and microbleeds.

Several studies have indicated that the prevalence of

microbleeds in AD ranges from 15% to 32% [37–41].
Microbleeds are also considerably more frequent in AD

compared with other neurodegenerative dementia [37].

Alzheimer’s disease

In typical late-onset (arbitrarily defined as age at

onset >65 years) AD, the medial temporal lobes

(MTL), especially the hippocampus and entorhinal

cortex, are amongst the earliest sites of pathological

involvement [42,43]. Other severely affected regions

include the posterior portion of the cingulate gyrus

and the precuneus on the medial surface [44–46] and
the parietal, posterior superior temporal and frontal

regions on the lateral cerebral surfaces [42,47–49].
Structural MRI studies in mild cognitive impair-

ment (MCI) have produced mixed results, in terms of

hippocampal as well as posterior cingulate and parie-

tal involvement (absent, unilateral or bilateral)

[50–60]. The reasons for this variability may consist of

different subject selection (i.e. diverse diagnostic inclu-

sion criteria), small sample size (i.e. studies are not

adequately powered to pick up differences even at the

group level) and methodological differences. It is also

worth noting that the largest source of variance in

MCI studies is likely to be the intrinsic heterogeneity

of the MCI population, because a relevant proportion

of these subjects will not progress to dementia. MCI

patients with predominant memory impairment

(amnestic MCI), who are at increased risk of develop-

ing AD, have atrophy in a consistent set of cortical

regions, the ‘cortical signature of AD’, including the

MTL and temporoparietal cortex. Conversely, non-

amnestic MCI shows a different pattern of atrophy

characterized by a relative sparing of the MTL and a

regional involvement which is typically highly consis-

tent with the observed clinical deficits.

Of all the structural markers of AD, hippocampal

atrophy assessed on conventional CT or coronal T1-

weighted images is the best established and validated.

MRI-autopsy studies have convincingly validated that

hippocampal volumes measured from antemortem

MRI scans correlate with Braak neurofibrillary tangle

pathological staging [61–63]. Indeed, MTL atrophy is

now one of the supportive biomarkers to make a

diagnosis of AD in the presence of memory loss pro-

posed by the new diagnostic criteria [6–8]. MRI is

superior to conventional CT in the evaluation of

MTL atrophy [10–12]. However, the possibility of

evaluating the pattern of atrophy using CT has been

improved with the advent of multi-detector row CT,

owing to the availability of high-resolution coronally

reformatted images [64]. MTL atrophy can be

detected by qualitative ratings based on visual scoring,
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or by linear measurements and quantitative volumetry

of regions of interest (referenced to a well-character-

ized population with age norms). Several visual rating

scales to quantify degree of MTL atrophy have been

developed and are widely used [65–68]. On the con-

trary, at present, accepted standards for quantitative

analysis are lacking [69]. Manual hippocampal seg-

mentation is the most validated procedure to estimate

a quantitative hippocampal volume, but different

laboratories use different anatomical landmarks and

measurement approaches [69]. Of note, a harmonized

protocol for manual hippocampal segmentation is cur-

rently being developed by an international working

group (EADC-ADNI), which will be available for

general use in 2013 [70]. Furthermore, the utility of

structural imaging will certainly be increased further

by automated segmentation algorithms developed in

the last few years, which are the only feasible methods

in the context of large studies [71,72], such as clinical

trials.

Clinical population studies have reported that hip-

pocampal volumes in mild AD patients are 15–40%
smaller than controls [25], and in MCI the volume is

reduced by 10–15% [73]. MTL atrophy can separate

mild to moderate AD patients from normal controls

with sensitivity and specificity >85% [25]. Structural

MRI estimates of tissue loss in MTL are predictive

for conversion from amnestic MCI to AD [74–83]. A
meta-analysis estimated that MTL atrophy, as

assessed on structural MRI, has 73% sensitivity and

81% specificity for predicting whether patients with

MCI will convert to AD [84]. Subjects with amnestic

MCI who progress to AD also have a greater degree

of grey matter atrophy at baseline beyond the MTL

than MCI who do not, including the medial and infe-

rior temporal lobes, temporoparietal association neo-

cortex and frontal lobes [50,52,85,86].

It should be emphasized that MTL atrophy may

occur in other diseases as well [87–92]; thus, MTL

atrophy alone lacks the specificity to confidently

exclude other dementia, in particular in patients at the

MCI stage.

Early-onset AD patients (i.e. subjects showing onset

of symptoms before the age of 65 years) showed less

prominent MTL atrophy and greater involvement of

the parietal, lateral temporal and frontal regions com-

pared with late-onset AD cases [91,93–95]. Methods

such as voxel-based morphometry (VBM) are a popu-

lar and successful way to test for groupwise differ-

ences in the topography of atrophy beyond the MTL.

However, the statistical testing portion of VBM is not

designed to provide diagnostic information at the sin-

gle subject level. A specific visual rating scale has been

designed, evaluating the posterior cingulate, precuneus

and superior parietal regions [96]. The utility of such

a scale has been assessed in pathologically proven

(mostly early-onset) AD and frontotemporal lobar

degeneration (FTLD) patients [97]. Thirty per cent of

AD patients had posterior atrophy in the absence of

abnormal MTL atrophy, whereas only 7% of the

FTLD group had abnormal posterior atrophy score

and normal MTL [97]. Adding the posterior atrophy

to the MTL visual rating score improved discrimina-

tion of early-onset AD from normal controls and all

AD from FTLD cases [97].

Atypical presentations of AD. AD pathology can man-

ifest itself with clinically atypical presentations, that

is, in some patients memory is not the primary deficit

but visuospatial and visuoperceptual and/or language

disturbances are prominent symptoms [98–100]. Atypi-

cal presentations are more often seen in early-onset

AD patients [99]. In atypical, focal AD presentations,

the MTL is relatively spared [99,101]. Two recent

quantitative MRI studies in pathology-proven AD

cases suggested that a pattern of temporoparietal atro-

phy or cortical thinning may suggest AD pathology

even in subjects presenting with non-amnestic clinical

syndromes [101,102]. The temporoparietal cortex

volume also provided better discrimination between

atypical AD and FTLD groups than the hippocampal

volume (81% vs. 74% accuracy) [101]. Two common

progressive, focal cortical syndromes associated with

AD pathology are posterior cortical atrophy (PCA)

and primary progressive aphasia (PPA). Structural

MRI scans of patients with PCA show atrophy of

parieto-occipital and posterior temporal cortices [99,103].

Compared with typical AD cases, PCA patients had

greater right parietal and less left MTL atrophy [99].

For a detailed description of structural neuroimaging

features in AD cases with prominent language deficits,

see the section on PPA.

Dementia with Lewy bodies

No clear signature pattern of cerebral atrophy associ-

ated with dementia with Lewy bodies (DLB) has been

established so far. Similar to AD, a diffuse pattern of

global grey matter atrophy including temporal, parie-

tal, frontal and insular cortices may occur in DLB

[104–106], but at the same time, a pattern of cortical

grey matter loss restricted to frontal and parietal lobes

has also been reported [107,108]. On the whole, sev-

eral volumetric studies have not found significant or

disproportionate occipital atrophy in DLB

[106,107,109].

A relatively robust MR finding in DLB is that of

relative preservation of the MTL compared with AD

of similar clinical severity [87,104–108,110–115]. This

finding is supported by a prospective MRI study with
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pathological verification, which found that MTL atro-

phy on MRI has a robust discriminatory power for

distinguishing AD from DLB (sensitivity of 91% and

specificity of 94%) [105]. Thus, a relative preservation

of MTL structures on CT or MRI supports a diagno-

sis of DLB in the consensus diagnostic criteria [116].

Subcortical structural alterations in terms of puta-

men atrophy have been described in some cases of

DLB relative to AD [117], whilst no significant atro-

phy was detected in caudate nucleus [117–119]. A pat-

tern of relatively focused atrophy of the midbrain,

hypothalamus and substantia innominata, with a rela-

tive sparing of the hippocampus and temporoparietal

cortex, has been found in DLB compared with AD

cases [107]. However, whether these findings help in

recognizing early suspected cases remains unknown.

Furthermore, a substantial overlap between DLB and

AD with regard to atrophy in these regions detracts

from the usefulness of these markers in individual

cases.

Frontotemporal dementia

The terms FTLD and FTD describe a group of clini-

cal syndromes which may be produced by a number

of histopathologically distinct entities. In these guide-

lines, the term FTLD will be used to indicate cases

with a pathological diagnosis, whilst the term FTD

will be used to refer to the clinical syndrome.

The designation of probable behavioural variant of

frontotemporal dementia (bvFTD) by the revised

diagnostic criteria [120] restricts diagnosis to patients

with demonstrable functional decline and typical neu-

roimaging findings, including frontal and/or temporal

atrophy, and hypoperfusion or hypometabolism on

PET or SPECT.

Structural MRI studies showed that classical

bvFTD presents with a combination of medial frontal,

orbital–insular and anterior temporal cortical atrophy

[121–128]. Such an atrophy pattern can be readily

appreciated on coronal T1-weighted MRI scans

(knife-edge atrophy). The MTL is more affected ante-

riorly, that is, the amygdala is more affected than the

hippocampus, and posterior hippocampus often

appears normal. Nevertheless, the typical pattern is

not necessarily present in all cases [129–131], particu-
larly in patients with FTD and motorneuron disease,

and the pattern of atrophy in bvFTD varies signifi-

cantly across different cohorts [132,133]. In some

cases, bvFTD presents with a remarkable atrophy of

the right anterior temporal lobe and a lesser involve-

ment of the frontal regions [127,134]. A large VBM

study suggested that bvFTD may be divided into four

anatomically different subtypes, two of which are

associated with a prominent frontal atrophy (i.e. fron-

tal dominant and frontotemporal variants) and two

with prominent temporal lobe atrophy (i.e. temporal

dominant and temporofrontoparietal subtypes) [127].

Brain atrophy in bvFTD also involves several subcor-

tical structures, such as the striatum [122,125,135],

thalamus [125,135,136], bilaterally and hypothalamus

[137]. Significant atrophy was also found in the brain-

stem, including the midbrain and pontine tegmentum

in some cases [125,138,139].

Despite variation and overlap of atrophy patterns,

visual inspection of regional atrophy on MRI may aid

in discriminating FTD from AD. A combined diag-

nostic criterion based on the finding of either severe

frontal atrophy or asymmetry was highly diagnostic

(sensitivity 71%, specificity 93%) of bvFTD compared

with non-FTD dementia cases (i.e. AD and vascular

dementia) [140]. In a study investigating the diagnostic

accuracy of visual inspection of MRI scans in patients

with pathologically confirmed diagnosis, atrophy of

the anterior, inferior and lateral temporal lobes was

associated with the highest sensitivity (�90%) for dis-

criminating FTLD from AD patients, and anterior

greater than posterior gradient and hemispheric asym-

metry of atrophy were each at least 85% specific for

FTLD versus AD [141]. A prospective study in 134

patients with clinically suspected bvFTD demon-

strated that evidence of frontotemporal atrophy on

structural MRI scans, in the absence of corresponding

changes in more posterior areas of the brain, had a

sensitivity of 63% and specificity of 70% against a

clinical diagnosis after 2 years [130].

Recent quantitative studies have suggested that a

cortical thinning of the anterior temporal lobe and

frontal lobe is indicative of the presence of FTLD

pathology in patients with a clinical diagnosis of

bvFTD or PPA during life [102]. Conversely, a corti-

cal thinning or atrophy in the posterior cingulate

gyrus, parietal lobe and frontal pole is suggestive of

AD pathology independent of clinical presentations

(i.e. even in patients with behavioural or language

deficits) [101,102] (see also sections on atypical AD

presentations and PPA).

Primary progressive aphasia

In patients clinically diagnosed with PPA, who are

then divided into clinical variants based on specific

speech and language features characteristic for each

subtype, an ‘imaging-supported’ diagnosis can be

made if the expected pattern of focal atrophy on

structural MRI scans (or functional involvement on

SPECT and FDG) is found [142].

Semantic variant PPA is associated with left ante-

rior temporal atrophy (temporal pole), affecting the

lateral and ventral temporal surfaces, as well as partic-
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ularly the anterior hippocampus, amygdala and fusi-

form gyrus [121,143–145]. Semantic patients may have

left hippocampal atrophy that is at least as severe as

that seen in AD patients [49,90,91,144]. In these

patients, the hippocampal atrophy is predominantly

located anteriorly, with a relative preservation of the

posterior hippocampal regions [49,90]. Temporal lobe

atrophy is also mainly inferior (often severe involve-

ment of the fusiform gyrus) with relative sparing of

the superior temporal gyrus [49,90]. As the disease

progresses, the right temporal lobe becomes more

involved [146].

The non-fluent PPA variant is associated with a

characteristic pattern of left anterior peri-Sylvian atro-

phy involving inferior, opercular and insular portions

of the frontal lobe [145]. Motor and premotor regions

and Broca’s area are also involved [145]. In non-fluent

patients, bilateral atrophy of the basal ganglia

[135,145], thalamus [135] and amygdala [135] was

observed. Compared with controls, non-fluent patients

also have atrophy of the left hippocampus [92]; how-

ever, it is less severe than that in AD patients [92].

In the logopenic PPA variant, the pattern of atro-

phy primarily affects the left temporoparietal junction,

including the left posterior superior and middle tem-

poral gyri, as well as the inferior parietal lobule

[99,145,147,148]. The involvement of the left MTL is

reported less consistently [147]. Such a posterior tem-

poroparietal pattern of atrophy chiefly discriminates

this syndrome from the other subtypes of PPA [148].

A major clinical challenge, to date, is the need to

improve the prediction of the specific histopathology

causing each of the PPA variants during life (FTLD

versus AD). A prominent left frontal and anterior

temporal atrophy is seen in semantic PPA patients

who have FTLD pathology at autopsy [149–154].
Conversely, semantic patients with AD pathology

mostly have hippocampal involvement and a lack of

the knife-edge anterior temporal atrophy, as well as a

less severe thinning of the temporal lobe in the regions

of the collateral sulcus and fusiform gyrus [154]. Some

studies evaluating patients with non-semantic PPA

associated with AD pathology demonstrated the pres-

ence of temporoparietal atrophy [151,152,155,156].

Two recent studies investigated the value of clinical

phenotyping, neuropsychological analysis and pattern

of MRI atrophy in predicting underlying pathology of

non-fluent and logopenic patients [155,156]. In the

first study, PPA cases with CSF findings consistent

with AD showed a posterior superior temporal atro-

phy, whilst patients with FTLD pathology had frontal

atrophy [155]. The second study showed that a dispro-

portionate or asymmetrical frontotemporal atrophy

on structural MRI (knife-edge atrophy) was 100%

specific for FTLD pathology but was only present in

a minority of patients (sensitivity 40%) [156]. Alto-

gether, these studies in pathologically proven cases

suggested that distinct patterns of tissue loss could

assist in the in vivo prediction of underlying pathol-

ogy. However, the results of these studies are limited

by the small numbers of patients assessed.

Miscellaneous

Midbrain atrophy, better seen on sagittal T1-weighted

images, dilatation of the third ventricle, atrophy of the

superior cerebellar peduncle and frontal cortical atro-

phy support a diagnosis of PSP [157]. T2-signal change

in the superior cerebellar peduncle can be seen in PSP

patients but is less sensitive [157]. Quantitative MRI

measurements of brainstem structures have been pro-

posed as potentially useful markers to diagnose PSP

on an individual patient basis. In particular, a ratio of

linear measurements (e.g. the so-called MR parkinson-

ism index, which combines measurements of midbrain

and pons areas as well as superior and middle cerebel-

lar peduncle widths) has been shown to differentiate

accurately PSP from Parkinson’s disease (PD) and

multiple system atrophy (MSA) cases [158,159].

Other specific imaging signs may include bilateral

striatal atrophy in Huntington’s disease, sometimes

many years before disease onset [160], and striatal or

neocortical abnormalities in patients with CJD. In

CJD, T2-weighted and especially FLAIR sequences

can show a very characteristic pattern of hyperintense

signal in the striatum and/or cortex [161]. DWI can

show focal changes in CJD not yet apparent on

FLAIR images (up to 20% of cases) [161,162]. In spo-

radic CJD, involvement of either the striatum or neo-

cortex or both is usually found [161]. In variant CJD,

there is a selective involvement of the medial and dor-

sal (pulvinar) thalamic nuclei, leading to the so-called

hockey stick sign [163].

Recommendations for structural MRI

1 Structural imaging should be carried out at least

once in the diagnostic work-up of patients with

cognitive impairment and serves at least three pur-

poses: to exclude other potentially treatable dis-

eases, to recognize vascular lesions and to identify

specific findings to help distinguish different forms

of neurodegenerative types of dementia (good

practice point).

2 MRI is currently the imaging modality of choice

for assessing subjects with suspected dementia.

However, where MRI is not available or contrain-

dicated, CT scans can usefully exclude major space

occupying lesions, large infarcts and hydrocephalus

(good practice point). Multi-detector row CT is
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the best alternative for patients who cannot

undergo MRI (good practice point).

3 A standard MRI protocol should include a high-

resolution structural volumetric T1-weighted scan,

transverse T2-weighted and FLAIR sequences and

transverse T2*-gradient echo sequence (good prac-

tice point). Routine contrast administration is not

indicated (good practice point). DWI can be useful

to identify recent infarcts, as well as cortical and/

or basal ganglia changes in CJD patients (good

practice point).

4 It is particularly difficult to attribute clinical signifi-

cance to evidence of cerebrovascular disease in

patients with cognitive impairment. Vascular

changes on CT or MRI do not preclude a diagnosis

of degenerative dementia, especially in older age. A

diagnosis of vascular dementia should only be made

where the vascular lesion(s) can explain the cogni-

tive deficit (class II, level A). The ‘mixed dementia’

label should be reserved for those cases in which

both clinical features and diagnostic markers point

to a mixed aetiology (good practice point).

5 T1-weighted images should be carefully evaluated

to assess specific patterns of focal atrophy, espe-

cially in the MTL, biparietal regions and posterior

cingulate cortex (as seen in AD), temporal pole

and/or frontal lobes (as seen in FTD), parietal/

occipital lobe (as seen in PCA), putamen, and mid-

brain and frontal lobe (as seen in PSP) (good prac-

tice point).

6 Coronal T1-weighted sequence can be used to assess

MTL atrophy to support a clinical diagnosis of AD

compared with cognitively normal subjects (class II,

level A). Prediction of subsequent AD in individuals

with amnestic MCI can also be obtained with MRI

volumetric measures of the MTL (class II, level A).

However, at present, accepted standards for quanti-

tative MTL volume measurement are lacking.

Therefore, quantification must rely on local specific

standards (good practice point).

7 Combining MTL measures with other potentially

informative markers, such as posterior cingulate

cortex and precuneus volumetric measures, are

likely to improve diagnostic confidence in AD

patients (class II, level B), mainly in younger cases.

8 In cases of atypical AD presentations, the involve-

ment of the MTL is reported less consistently than

that of lateral temporal and medial parietal regions

(class III, level B).

9 No established structural MRI pattern is charac-

teristic for DLB (class II, level A). However, the

absence of MTL atrophy on CT or MRI may be

suggestive of a diagnosis of DLB compared with

AD (class II, level A).

10 The pattern of atrophy is more useful than atro-

phy of single regions in the differential diagnosis

of FTD compared with AD: knife-edge, severe

frontotemporal atrophy combined with dilatation

of frontal horn, and an anterior greater than pos-

terior gradient is suggestive of a diagnosis of FTD

(class II, level A).

11 A normal structural MRI scan should prompt the

clinician to reconsider a diagnosis of bvFTD, if

clinically severe, and semantic variant PPA (good

practice point).

12 Presence of knife-edge frontal and/or temporal

lobe atrophy in patients with PPA is predictive of

FTLD pathology, whilst the presence of temporo-

parietal atrophy is highly associated with AD

(class III, level C).

Functional imaging findings

Alzheimer’s disease

Cerebral blood flow SPECT and FDG PET scans of

typical AD patients demonstrate predominant hypo-

perfusion or reduced glucose metabolism in the tem-

poroparietal regions, including the precuneus and the

posterior cingulate cortex [164]. Functional frontal

lobe involvement is also often reported in AD, but

usually in conjunction with and characteristically less

severe than temporoparietal involvement [165]. Over-

all, hypoperfusion or hypometabolism in early-onset

AD is much greater in magnitude and extent than

that of late-onset AD patients with similar dementia

severity [166–168]. Early-onset AD patients typically

show more severe hypometabolism in parietal, frontal,

occipital and subcortical areas [167,168]. The primary

visual and sensorimotor cortices, cerebellum, thalamus

and basal ganglia are relatively spared in AD [165].

A few studies compared CBF SPECT and FDG

PET in their ability to differentiate AD from healthy

controls and other dementia, but it seems that FDG

PET has both a higher sensitivity and a higher speci-

ficity than SPECT [13–16]. The best correspondence

was in the temporoparietal and posterior cingulate

cortices. However, tracer uptake reductions were sig-

nificantly more pronounced with PET than with

SPECT [13].

Most existing studies compared FDG PET to a

clinical diagnosis. Five case–control FDG PET studies

using clinical assessment as the reference standard

[169–173] revealed an overall diagnostic accuracy of

93% for differentiating AD subjects from healthy

subjects, with sensitivity of 96% and specificity of

90% [164]. A prospective study of 102 individuals,

presenting consecutively to a primary care centre for

examination of suspected early-onset dementia,
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showed sensitivity of 78% and specificity of 81% of

FDG PET scans against clinical diagnosis of AD

[174]. Some studies compared the accuracy of FDG

PET with that of clinical and neuropathological diag-

nosis of dementia [165,175–177]. A multicentre analy-

sis in 138 patients with histopathological diagnoses

reported that FDG PET correctly identified the pres-

ence or absence of AD in 88% of the cases, with a

sensitivity of 94% and a specificity of 73% [175]. A

single-centre cohort study of 44 subjects with variable

levels of cognitive impairment and autopsy confirma-

tion showed that the diagnostic accuracy available

with FDG PET at an initial clinical evaluation (sensi-

tivity, 84%; specificity, 74%) was better than that of

initial clinical evaluation alone (sensitivity, 76%; spec-

ificity, 58%) and was similar to that of longitudinal

clinical diagnosis over approximately 4 years [176].

The diagnosis of AD was associated with a 70%

probability of detecting AD pathology, but with a

positive PET scan this increased to 84%, and with a

negative PET scan this decreased to 31% [176]. A

diagnosis of not-AD at an initial clinical evaluation

was associated with a 35% probability of AD pathol-

ogy, increasing to 70% with a positive PET scan

[176].

FDG PET differentiates patients with MCI from

healthy controls. Amnestic MCI typically shows re-

gional hypometabolism consistent with AD, although

the magnitude of reduction is milder than that in clin-

ically probable AD cases [172,178–183]. Longitudinal
studies of patients with MCI found that if the baseline

FDG PET scan suggests an AD-like pattern, the

probability of clinical progression within several years

is extremely high [184–187]. A meta-analysis estimated

that an AD-like FDG PET pattern observed at base-

line in MCI patients had a sensitivity of 89% and a

specificity of 85% in distinguishing converters from

stable subjects [84]. However, several MCI patients do

not have amnestic symptoms. The few CBF SPECT

and FDG PET studies that considered amnestic and

non-amnestic MCI patients separately provided evi-

dence for a high variability in non-amnestic subjects

[172,179,180,188]. A large multicentre study examining

FDG PET scans from 114 MCI subjects (amnestic

and non-amnestic) found an AD-like PET pattern in

25% of subjects and a DLB- or FTD-like PET pat-

tern in 10% of subjects [172]. The AD pattern was

found in the majority (79%) of the MCI patients with

deficits in multiple cognitive domains, frequently with

additional frontal hypometabolism, and in 31% of

amnestic MCI patients [172]. The remaining amnestic

MCI patients showed primarily hypometabolism

restricted to the hippocampus and posterior cingulate

cortex [172]. Non-amnestic MCI patients showed

more variable FDG PET profiles, from no hypo-

metabolism (9%) and isolated hippocampal deficits

(18%) to widespread FDG uptake consistent with

DLB (18%) or with AD and FTLD (9%) [172].

Atypical presentations of AD. The value of functional

imaging biomarkers might also differ in the setting

of atypical, focal AD presentations, in which the

topographical distribution of functional abnormalities

needs to be considered separately in each syndrome.

Data from functional imaging studies using either

CBF SPECT or FDG PET demonstrate a compara-

ble involvement of temporoparietal cortex and precu-

neus in PCA and typical AD, with extension of

hypoperfusion or hypometabolism into occipital and

posterior temporal lobes in PCA patients [189–192].
In addition to posterior regions, FDG PET in PCA

has indicated specific areas of hypometabolism in the

frontal eye fields bilaterally, which can occur second-

ary to loss of input from occipitoparietal regions and

be the cause of oculomotor apraxia in these patients

[189,191]. Only a few studies provide guidance about

the degree of sensitivity and specificity of CBF

SPECT or FDG PET in the diagnostic work-up of

atypical AD cases. A retrospective study of 94

patients with a clinical diagnosis of MCI or dementia

(typical or atypical), who had an FDG PET within

2 months of their diagnosis, showed that FDG PET

findings significantly lowered the number of atypical/

unclear diagnoses from 39% to 16% [193]. For a

detailed description of functional neuroimaging fea-

tures in AD cases with prominent language deficits,

see the section on PPA.

Dementia with Lewy bodies

Numerous studies reported predominant medial occip-

ital cortex hypoperfusion or hypometabolism in DLB

patients compared with AD, with a parietotemporal

reduction common to both the diseases

[114,165,172,194–199]. Occipital lobe hypometabolism

differentiated patients with DLB from AD in both

clinically diagnosed [172,196,197,199] and autopsy-

confirmed [165,194,195] cohorts. One study comparing

FDG PET findings with autopsy results found that

occipital hypometabolism, particularly in the primary

visual cortex, distinguished DLB from AD with 90%

sensitivity and 80% specificity [165]. Furthermore, the

sensitivity in discriminating DLB and AD using FDG

PET was greater than that with clinical diagnostic cri-

teria applied retrospectively to the data from medical

charts [165]. However, on individual SPECT and

FDG PET scans, the appearances of DLB and AD

can be identical. Moreover, occipital hypometabolism

is not a specific marker for DLB and can occasionally

be associated with AD. In particular, occipital metab-
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olism declines in advanced AD [200] and is associated

with atypical AD with PCA [189–192]. The differential

diagnosis between DLB and PCA can even be particu-

larly difficult as in some PCA patients there is relative

sparing of the hippocampus. In the light of these find-

ings, the McKeith criteria [116] consider a generalized

low uptake on SPECT/PET scan with reduced occipi-

tal activity as a supportive feature in the diagnostic

criteria for DLB, that is, a finding that is commonly

present in DLB but lacks sufficient diagnostic specific-

ity to be categorized as core or suggestive. On FDG

PET, the cingulate cortex in DLB appears to be rela-

tively spared (‘the cingulate island sign’) compared

with AD cases, but the clinical value of this finding

has not been fully investigated [196,201].

Unlike AD, DLB is characterized by nigrostriatal

dopaminergic neurodegeneration, making dopaminer-

gic imaging a potentially useful diagnostic tool in this

disease [202]. Reduction in striatal uptake of dopa-

mine can be visualized with 18F-L-dihydroxyphe-

nylalanine (18F-DOPA) or by imaging the dopamine

transporter using 123I-2beta-carbometoxy-3beta-(4-iodo-

phenyl)-N-(3-fluoropropyl) nortropane (123I-FP-CIT)

SPECT (known commercially as the DaTSCANTM;

GE Healthcare, Waukesha, WI, USA). In a multicen-

tre Phase III trial of 123I-FP-CIT SPECT in 326

patients with a clinical consensus diagnosis of proba-

ble (n = 94) or possible (n = 57) DLB or non-DLB

dementia (n = 147) [203], mean sensitivity of 123I-FP-

CIT SPECT imaging for a clinical diagnosis of proba-

ble DLB was 78%, whilst the mean specificity for

excluding non-DLB dementia (which was predomi-

nantly due to AD) was 90%, giving overall diagnostic

accuracy of 86%. Follow-up clinical diagnosis at 12

months, when diagnosis had become clearer in nearly

60% of patients, confirmed the ability of 123I-FP-CIT

SPECT imaging to discriminate DLB from non-DLB

dementia [204]. Of 44 patients with a clinical diagnosis

of possible DLB at baseline, the diagnosis at follow-

up remained as possible DLB in 18 but was changed

to probable DLB in 19, 12 of whom had abnormal

SPECT scans at baseline, and to non-DLB dementia

in seven, all of whom had normal baseline scans [204].
123I-FP-CIT SPECT has demonstrated higher sensitiv-

ity and specificity for differentiating DLB from non-

DLB than clinical diagnosis in a series of 20 patients

who had post-mortem brain examination [205]. In this

study, sensitivity of an initial clinical diagnosis of

DLB against autopsy diagnosis was 75% and specific-

ity was 42%, in comparison with 88% sensitivity and

100% specificity with 123I-FP-CIT SPECT imaging

[205]. These results suggest that an abnormal dopami-

nergic imaging scan in individuals with possible DLB

strongly supports the diagnosis. As a consequence,

low dopamine transporter uptake in the basal ganglia

demonstrated by SPECT or PET imaging has been

included as a suggestive feature in the diagnostic crite-

ria for DLB (one suggestive feature plus one core fea-

ture being sufficient to allow a diagnosis of probable

DLB) [116]. On the contrary, its negativity does not

exclude a clinical diagnosis of probable DLB, as

about 20% of probable DLB cases will have a normal

or inconclusive scan [204].

Dopaminergic imaging cannot distinguish DLB

from alternative nigrostriatal disorders, such as PD

with dementia [206–210], MSA, PSP, corticobasal

degeneration, vascular parkinsonism with dementia or

FTD with parkinsonism, as all are associated with

presynaptic dopaminergic deficiency [211].

Frontotemporal dementia

Behavioural variant of frontotemporal dementia is

identified on SPECT or PET scans by patterns of hypo-

perfusion or hypometabolism in frontal, insular and

anterior temporal regions that are typically quite

asymmetrically centred into the frontolateral cortex

[212–214]. The regions mostly impaired are the medial

frontal cortex, followed by the frontolateral and ante-

rior temporal cortices. A prospective study in 134

patients with suspected bvFTD demonstrated that a

predominant frontal, anterior temporal or frontotem-

poral hypoperfusion or hypometabolism on initial

SPECT or PET scans has a sensitivity of 90% and

specificity of 75% against a clinical diagnosis after

2 years [130]. However, metabolic abnormalities are

not limited to these regions. As the severity of demen-

tia increases, the severity and topographical extent of

perfusion and metabolic impairments also increase

and begin to involve other association areas [215].

The regional pattern of predominantly frontal

functional impairment in FTD, with relative sparing

of posterior brain regions, usually allows a clear dis-

tinction between these patients and those with AD

[140,213,216–219]. Using an anterior-to-posterior CBF

SPECT ratio (medial superior frontal gyrus/medial

temporal lobes), patients with clinical bvFTD were

successfully distinguished from AD patients, with a

sensitivity of 87% and a specificity of 96% versus

early-onset AD patients and 80% versus late-onset

AD patients [216]. A few studies have looked at the

accuracy of SPECT or FDG PET findings in relation

to the pathological diagnoses [177,220]. A reduction

in frontal CBF was more common in pathologically

confirmed FTLD than in AD cases and was of diag-

nostic value (sensitivity 80%, specificity 65%) [220].

When the pattern of bilateral frontal CBF reduction

was not associated with a bilateral parietal CBF

abnormality, the diagnosis was more accurate (sensi-
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tivity 80%, specificity 81%) [220]. However, an over-

lap of abnormalities between the two conditions can

be seen, as AD can involve frontal regions and FTLD

may not spare temporoparietal cortex [221]. In a

study of autopsy-proven FTLD and AD patients, the

addition of FDG PET scans particularly improved the

accuracy of an FTLD diagnosis more than an AD

diagnosis [177]. However, FDG PET scans from

FTLD patients had more variability of interpretation

compared with those from AD cases, resulting in

lower sensitivity (70% for FTLD vs. 98% for AD)

and confidence [177]. The disagreement in interpreta-

tion of scans in patients with FTLD largely occurred

when there was a temporoparietal hypometabolism

[221]. Hypometabolism of anterior cingulate and ante-

rior temporal regions indicates a high likelihood of

FTLD, even when temporoparietal hypometabolism is

present [221].

Primary progressive aphasia

In patients with semantic variant PPA, FDG PET

studies showed asymmetrical hypometabolism of the

temporal lobes, more marked on the left side

[100,222–224]. A functional deficit of the left frontal

opercular regions of the brain has been reported in

non-fluent variant PPA patients [100,225–228]. In

these cases, a functional involvement of bilateral

caudate nuclei and thalami was also described [228].

Logopenic PPA patients usually show a pattern of

left posterior temporoparietal hypometabolism on

FDG PET scans [100].

A study comparing semantic PPA and very early

AD patients using structural MRI and FDG PET

findings revealed hippocampal atrophy and hypome-

tabolism in both groups, but a strikingly reduced

metabolism in the posterior cingulate cortex in

patients with AD that was not present in those with

semantic variant PPA [222]. A functional imaging

study of non-fluent patients demonstrated that a pat-

tern of bilateral temporoparietal involvement is pre-

dictive of AD pathology, whilst a unilateral (left),

reduced temporoparietal cortex function can be seen

in cases with FTLD pathology [229]. On the contrary,

a bilaterally normal temporoparietal cortical perfusion

or metabolism was predictive of FTLD pathology

[229].

Recommendations for functional imaging

1 Although typical cases of dementia may not bene-

fit from routine SPECT or PET imaging, these

tools are recommended in those cases where diag-

nosis remains in doubt after clinical and structural

MRI work-up and in particular clinical settings

(class II, level A).

2 Functional imaging can be of value to diagnose

(or exclude) a neurodegenerative dementia in

those subjects with cognitive impairment present-

ing with severe psychiatric disturbances (includ-

ing depression and agitation) and in cases where

proper cognitive testing is difficult, that is, with

no language in common with the clinician (good

practice point).

3 Normal FDG PET scan findings, in the presence

of the suspicion of dementia, make a neurodegen-

erative diagnosis less likely (class II, level A).

4 The overall regional pattern of metabolic impair-

ment of the posterior cingulate/precuneus and lat-

eral temporoparietal cortices, more accentuated

than frontal cortex deficits, together with the rela-

tive preservation of the primary sensorimotor and

visual cortices, basal ganglia and cerebellum

defines the distinct metabolic phenotype of AD

(class II, level A).

5 AD-like metabolic patterns in patients with MCI

are predictive of conversion to AD within several

years (class II, level A).

6 Occipital hypometabolism, particularly in the pri-

mary visual cortex, may be more common in

DLB than AD on a group basis (class II, level

B). However, on individual scans, the appear-

ances of DLB and AD can be identical. More-

over, occipital hypometabolism is not a specific

marker for DLB and can be associated with AD

(good practice point).

7 Although an overlap of functional abnormalities

between FTD and AD has been shown to occur,

the presence of posterior temporal and parietal

brain hypoperfusion or hypometabolism is pre-

dictive of a pathological diagnosis of AD,

whereas a disproportionate reduction in frontal

perfusion/metabolism is more common in FTD

cases (class II, level A).

8 In PPA patients, bilateral posterior temporopari-

etal hypometabolism (PET) or hypoperfusion

(SPECT) is predictive of AD pathology; normal

bilateral posterior temporoparietal function is spe-

cific for FTLD (class III, level C).

9 Dopaminergic SPECT is useful to distinguish DLB

from AD (class I, level A), especially when there

are no clear extrapyramidal symptoms and signs.

However, a negative 123I-FP-CIT scan does not

necessarily exclude a diagnosis of probable DLB,

as around 20% of individuals with probable DLB

appear to have normal scans (class I, level A).

10 Dopaminergic SPECT can be useful in differentiat-

ing DLB from long-term psychiatric patients on

neuroleptic drugs, whose parkinsonism may be

drug-induced (good practice point).
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Future tools

Amyloid imaging

Vascular dementia

Of particular interest is the potential of PET amyloid

imaging (currently just a research tool) to differentiate

mixed AD with cerebrovascular disease from pure AD

or vascular dementia. Both carbon-11 (11C) and 18F

ligands are available. One study found that 69% of

patients clinically diagnosed with subcortical vascular

dementia were negative for PET 11C-Pittsburgh com-

pound B (PIB) binding [230]. Younger age, a greater

number of lacunae and a less severe MTL atrophy

predicted a negative amyloid imaging scan [230].

Another small study found high 11C-PIB binding in

40% of patients with post-stroke dementia [231].

Thus, amyloid imaging can be helpful in identifying

cognitively impaired patients with high vascular bur-

den who also have comorbid AD. Furthermore,

patients with CAA show high11C-PIB binding com-

pared with controls [232], and this can aid differentia-

tion between CAA and brain haemorrhages caused by

small-vessel disease.

Alzheimer’s disease

Amyloid imaging such as 11C-PIB PET has very high

(90% or greater) sensitivity for AD [233]. The amy-

loid imaging tracers flutemetamol, florbetapir and

florbetaben labelled with 18F demonstrated similar

accuracy for distinguishing patients with AD from

normal subjects and those with other diseases

[234–240]. Amyloid tracer binding is diffuse and sym-

metrical, with high uptake consistently found in the

prefrontal cortex, precuneus and posterior cingulate

cortex, followed by the lateral parietal, lateral tempo-

ral cortex and striatum. This pattern closely mirrors

the distribution of plaques found at autopsy [241].

Compared to healthy controls, early-onset AD

patients showed increased 11C-PIB uptake throughout

frontal, parietal and lateral temporal cortices and stri-

atum and no significant differences in regional or glo-

bal 11C-PIB binding between early-onset and late-

onset patients were found [168]. However, some

healthy elderly controls show high 11C-PIB binding.

The frequency of increased cortical 11C-PIB binding

in controls increases rapidly from 10% or less below

the age of 70 to 30–40% at the age of 80 years [242].

As a group, 52–87% of MCI patients show elevated
11C-PIB binding in a similar regional distribution to

AD [243,244]. Patients with amnestic MCI are more

likely to be 11C-PIB-positive than patients with non-

amnestic presentations [244]. Studies using 18F tracers

report similar findings, with positive scans found in 45

–60% of MCI patients [238,245,246]. In longitudinal

studies, 11C-PIB-positive subjects with MCI are signif-

icantly more likely to convert to AD than 11C-PIB-

negative patients [81,247–249], with 1-year conversion

rates to AD ranging from 38% to 47% in 11C-PIB-

positive MCI subjects versus. virtually no conversion

in 11C-PIB-negative subjects [248,249]. Faster amnestic

MCI converters have higher 11C-PIB retention than

slower converters in the anterior cingulate, frontal

and temporal cortices [248].

Atypical presentations of AD. A few studies have

applied amyloid imaging in patients with an atypical

clinical presentation of AD. In two studies in which
11C-PIB uptake was compared in large groups of

patients with PCA and typical AD, no significant dif-

ference was reported in amyloid deposition between

these groups. Both showed diffuse 11C-PIB uptake

throughout frontal, temporoparietal and occipital

cortex [192,250].

Dementia with Lewy bodies

Small case series using amyloid imaging reveal that

DLB patients have often an increased cortical amyloid

deposition (from 33% up to 87% of cases) similar to

that observed in AD [114,251–255]. The regional pat-

tern of 11C-PIB retention in patients with DLB who

were 11C-PIB-positive reflects the pattern typically

seen in patients with AD, involving the frontal, parie-

tal and superior temporal lobe association cortices.

Increased striatal 11C-PIB retention has been reported

in patients with DLB [251]. Amyloid imaging with
18F-florbetaben showed cortical binding in 29% of

DLB cases [246]. Some degree of amyloid deposition

is also observed in a minority of PD with dementia

cases (from 17% to 33%), whilst it is more rarely

present in PD patients without dementia (from 0% to

23%) [251–255].

Frontotemporal dementia and primary progressive

aphasia

Amyloid imaging is expected to provide excellent

differentiation of AD from FTD, which is not associ-

ated with amyloid deposition – particularly in younger

patients. Generally, low cortical 11C-PIB retention

[242,256–259] or 18F-florbetaben positivity [237,246]

was observed in patients with FTD. Amyloid imaging

was used in five bvFTD patients, four semantic vari-

ant PPA patients and seven AD patients [256]. Whilst

all AD patients experienced an increased 11C-PIB

retention, three bvFTD patients, two semantic

patients and all healthy controls had 11C-PIB-negative

scans. The retrospective revision of clinical and func-

tional neuroimaging data showed that the two 11C-PIB-

positive bvFTD patients had a clinical and cognitive

© 2012 The Author(s)
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picture consistent with either AD or bvFTD and bipa-

rietal hypometabolism on FDG PET. Both 11C-PIB-

positive semantic variant PPA patients had FDG PET

scans consistent with FTLD; however, one patient

had a classic neuropsychological profile for semantic

PPA, whilst the other had a cognitive profile that

could be consistent with either AD or FTLD. 11C-PIB

PET was used to compare 10 clinically diagnosed

bvFTD patients with 17 11C-PIB-positive AD patients

and eight PIB-negative healthy controls [257]. Two

bvFTD patients showed a positive 11C-PIB retention

similar to that of AD cases [257]. The accurate revi-

sion of clinical and neuroimaging data showed that,

although one of the 11C-PIB-positive patients had a

clinical history and an FDG PET scan suggestive of

FTLD, the other had a neuropsychological profile

which was atypical for bvFTD and developed a glo-

bal, AD-like cognitive impairment during follow-up,

thus suggesting a diagnosis of AD with frontal

involvement [257]. In a large study of 62 AD patients

and 45 FTD patients, 11C-PIB scans were positive in

87% of AD cases and 16% of FTD cases [259]. 11C-

PIB visual reads had a higher sensitivity for AD than

FDG PET (89% vs. 77%), with similar specificity

(83% vs. 84%). When scans were classified quantita-

tively, PIB had higher sensitivity (89% vs. 73%),

whilst FDG PET had higher specificity (83% vs.

98%) [259]. 11C-PIB outperformed FDG PET in clas-

sifying the 12 patients with known pathology (97%

vs. 87% overall accuracy combining visual reads and

quantitative classification) [259].

In small PPA case series [100,258], the semantic and

non-fluent groups show the lowest proportion of
11C-PIB-positive cases, whilst amyloid deposition is

more common in patients with the logopenic variant.

Logopenic PPA cases show a diffuse 11C-PIB binding

pattern that is indistinguishable from typical AD

[100,258].

Recommendations for amyloid imaging

1 Amyloid imaging is not yet recommended for rou-

tine use in the clinical setting, especially in the

diagnostic work-up of patients with straightfor-

ward clinical AD as these patients are very likely

to have positive scans (class III, level B).

2 Negative amyloid scans indicate absence of AD

pathology with a high level of accuracy (class III,

level B), but healthy elderly controls might have

positive amyloid scans, so their predictive value in

isolation is not clear (good practice point).

3 Amyloid imaging is likely to find clinical utility in

the following fields:

i The stratification of MCI patients into those with

and without underlying AD (class III, level B);

ii The evaluation of early-onset AD patients, as

these patients often present with atypical

symptoms, or patients with clinically atypical

presentations (e.g. PPA), as these are patho-

logically heterogeneous syndromes that are

variably associated with AD pathology (class

III, level C). Also, below the age of 70 years,

frequency of amyloid deposits in controls is

low (<20%);

iii The differential diagnosis between AD and

FTD, because amyloid plaques are not part of

the FTLD pathological spectrum (class III, level

C);

iv The differential diagnosis between CAA and

intracranial haemorrhage caused by small-

vessel disease, because patients with CAA but

not those with small-vessel disease have posi-

tive amyloid imaging scans (class III, level C).

Serial structural MRI

Rates of whole-brain atrophy in AD have been esti-

mated at 1.4–2.2% per year, whereas rates of atrophy

during normal ageing (for a mean age of 70 years) do

not usually exceed 0.7% per year [260]. A meta-

analysis showed that mean annualized hippocampal

atrophy rates are 4.7% for AD subjects and 1.4% for

controls [261]. Atrophy rate from serial MRI studies

was found to be associated with time to subsequent

clinical conversion to a more impaired state in both

cognitively healthy elderly subjects and subjects with

amnestic MCI [262,263].

Pathologically proven DLB patients showed a much

lower rate of atrophy (similar to that of age-matched

controls) compared to the AD group, with rates of

whole-brain atrophy of only 0.4% per year [264]. The

annual rate of whole-brain volume loss varies from

1.4% to 3.7% in bvFTD patients and from 1.7% to

2.6% in semantic and non-fluent PPA patients [265–
267]. Over 1 year, semantic patients had the greatest

volume loss in the temporal lobes (5.9% on the left

and 4.8% on the right) [268]. The annual rate of

whole-brain volume loss in autopsy-proven FTLD

patients was significantly higher than the rate

observed in AD subjects [269]. The results of a region-

al analysis of atrophy showed that there were differ-

ences between FTLD and AD patients in the rates of

tissue loss of both anterior quadrants of the brain,

but not in the posterior quadrants [265].

Recommendations for serial structural MRI

1 Changes over a relatively short period (e.g.

6 months to 1 year) that are visible to the naked

eye may strengthen the clinical suspicion of
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neurodegenerative dementia, particularly in MCI

patients (class IV, good practice point).

2 In most cases, advanced image registration tech-

niques are needed to pick up subtle structural

changes over time, but these are restricted to

research use or clinical trials (class IV, good prac-

tice point).

Non-conventional MRI

1H-MRS

Proton magnetic resonance spectroscopic imaging

(1H-MRS) studies have reported that the level of N-

acetylaspartate (NAA) is decreased in AD [270] and

MCI patients [271–274] compared with healthy sub-

jects. In addition to neuronal damage, increased glial

cell activity, reflected by raised levels of myo-inositol

(mI), has been demonstrated in AD patients compared

with controls [275]. The NAA/mI ratio enabled the

differentiation of patients with AD from cognitively

healthy subjects with relatively high sensitivity

(57–90%) and specificity (73–95%) [276–279]. NAA/

creatine was found to be lower in patients with AD

and FTD than in those with DLB [280]. Whilst these

findings are robust on a group level, diagnostic value

is not robust enough in individual cases.

Diffusion tensor MRI

Diffusion tensor (DT) MRI studies in AD have found

altered diffusion properties compared with controls in

several brain regions, especially in temporal and fron-

tal lobes, posterior cingulum and corpus callosum

[281]. White matter changes in AD generally follow

the anatomical pattern of grey matter atrophy [282].

Differences between MCI and controls parallel those

between AD and controls, but fewer regions reached

statistical significance [281]. The severity of micro-

structural damage within and beyond the MTL was

associated with an increased short-term risk of devel-

oping AD in amnestic MCI patients [283–286].
DT MRI is also increasingly being used to exam-

ine differences across dementia subtypes [287–289].
For instance, it has been shown that bvFTD is asso-

ciated with greater diffusion abnormalities in frontal

brain regions compared with AD cases, whereas no

brain areas in AD showed greater damage than in

bvFTD [289]. In addition, DT MRI measures of the

anterior corpus callosum and left superior longitudi-

nal fasciculus differentiated bvFTD from non-fluent

cases, whilst the best predictors of semantic PPA

compared with both bvFTD and non-fluent cases

were diffusivity abnormalities of the left uncinate and

inferior longitudinal fasciculus [290]. These results

suggest that white matter integrity loss measured

with DT MRI may offer new markers for the diag-

nostic differentiation between AD and other neurode-

generative dementia.

Arterial spin labelling

Non-invasive perfusion MRI with arterial spin label-

ling (ASL) contrast uses magnetically labelled arterial

blood water as an endogenous tracer to provide quan-

titative CBF measurements [291]. The type of infor-

mation that can be obtained is comparable with that

from nuclear medicine examinations, such as HMPAO

SPECT and FDG PET, but with higher resolution. A

limited number of investigations have employed this

technique in the neurodegenerative dementia popula-

tion. Studies in patients with AD and FTD showed a

pattern of hypoperfusion consistent with that of FDG

PET hypometabolism [292–294]. Similar findings have

been found in amnestic MCI patients [293].

Resting state functional MRI

Resting state functional MRI is a promising new tool

for the investigation of the intrinsic connectivity of

brain networks in patient populations [295]. The

default mode network (DMN), which includes the

posterior cingulate, inferior parietal, inferolateral tem-

poral, ventral anterior cingulate and hippocampal

regions, has received the greatest attention and has

been shown to be less active in AD [296–299] and

MCI [300,301] patients than in healthy elderly con-

trols. Sensitivity of RS fMRI measures in differentiat-

ing AD patients from healthy elderly controls ranges

from 72% to 85% and specificity from 77% to 80%

[296,302,303]. The impaired posteromedial cortex

deactivation in amnestic MCI patients was also found

to be predictive of clinical conversion to AD

[304,305].

Unlike AD, bvFTD patients experienced decreased

salience network connectivity in the frontal and

numerous subcortical nodes, as well as an increased

parietal DMN connectivity relative to healthy controls

[306,307]. A combination of salience network and

DMN connectivity scores was found to be able to

classify healthy subjects, AD patients and bvFTD

patients with 92% accuracy and to separate AD and

bvFTD patients with 100% accuracy [306].

Recommendations for non-conventional MRI

1 At present, advanced MRI techniques do not have

a role in the diagnosis or routine assessment or

monitoring of neurodegenerative dementia (class

IV, good practice point).

2 The reliability and reproducibility of advanced

MRI techniques requires further evaluation, and

serious efforts are under way to achieve harmo-
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nization of both acquisition and post-processing

procedures (e.g. http://enigma.loni.ucla.edu/ongoing/

dti-working-group/).

Disclosure of conflict of Interest

The authors declare no other conflict of interests.

General financial interests are listed in the Appendix.

Appendix

Massimo Filippi received personal compensation for

board membership from Teva Pharmaceutical Industries

Ltd., and Genmab A/S; for consultancies from Bayer

Schering Pharma, Biogen-Dompé, Genmab A/S, Merck
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